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Abstract. We study the interplay between crystal orientation and confinement in diffusion-limited
growth. Growth of the overall morphology in the direction of minimal surface stiffness has been
investigated in some detail by various authors, the most recent advances being summarized by
Breneret al (Brener E, M̈uller-Krumbhaar H and Temkin D 1996Phys. Rev.E 542714). Here, we
consider competing influences, each trying to impose a different growth direction. The simplest
possible situation giving rise to such a competition is growth in a channel with a mismatch between
the orientation of the channel walls and surface tension anisotropy. Analysing this situation, we
find a new structure and gain further insight into the problem of morphological stability. Another
case is that of periodic boundary conditions, where the same angle of misorientation can be used
to describe growth of atilted array of finger-shaped crystals. It is found that the transition between
dendritic and doublonic structures is affected by the tilt.

1. Introduction

During the last decade, pattern formation resulting from growth phenomena has attracted
increasing interest in many different fields of science [1, 2]. In spite of the vast variety of
possible pattern-forming phenomena, people have been able to organize their knowledge in
terms of some basic prototypic structures that seem to possess universal properties. Our
main interest here lies in diffusion-limited shape evolution, i.e., in structures arising from
the transport of a conserved quantity. A canonical example is a crystal growing from its
supercooled pure melt, the transported quantity being heat in this case.

In particular, we will assume that the effects of crystalline anisotropy are small enough
for facets or missing interface orientations not to occur. For such a system, the stability
investigation of simple growth shapes goes back to Mullins and Sekerka [3, 4]. A number
of review articles addressing, among other topics, questions of morphology selection have
since been published [5–16]. They often focus on problems such as length-scale selection
and the ‘classical’ morphology, the dendrite. Indeed, dendritic patterns are the most frequent
microstructures in materials processing. They are known to be solutions of the underlying
mathematical problem (described in section 2), if there is a nonvanishing crystal anisotropy,
which can be either anisotropy of surface tension or of the coefficient of attachment kinetics.

The limit of vanishing anisotropy remained less clear until recently, when numerical
evidence was given for thedoublon§ as a steady-state solution of this case [17,18].

At present, doublons are believed to be the building units of theseaweedmorphology
(formerly known under the name ofdense branchingmorphology [19]) and there have been

§ Doublonsconsist of two asymmetric fingers of one phase (usually the solid) separated by a narrow channel filled
with the second phase (usually the liquid).
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recent attempts to formulate a theory [20–23] for these fundamental morphologies and the most
relevant parameters controlling their appearance. The basic result was a morphology diagram
(see figure 1), predicting morphologies as a function of the dimensionless undercooling1 (the
driving force) and the surface stiffness anisotropyε.

Figure 1. A morphology diagram as given by Brener, Müller-Krumbhaar, and Temkin [23].
The different morphologies are indicated in terms of the controlling parameters1 (dimensionless
undercooling) andε (crystal anisotropy). Altogether we distinguish between compact dendrites
(CD), compact seaweed (CS), and the corresponding fractal structures (FD, FS).

The idea of describing experimental observations of certain pattern formation processes in
terms of a morphology diagram is now older than a decade [24,25]. It is based on the concept
of nonequilibrium phase transitions, the application of which to morphologies was advocated
early on by Ben-Jacobet al [26]. However, even for the simplest case of a crystal growing into
its undercooled melt with heat being transported by diffusion only, a theoretical foundation
for a morphology diagram was given only in 1992 by Breneret al [21]. Subsequently, this
diagram was refined [23], and one of the suggestions of this article is that further refinement
may become necessary in the future.

Besides the distinction between dendrites and seaweeds, referring to the orientational
order of the pattern or absence thereof, there is a second classification scheme, concerned
with the internal structure of the patterns, namely fractal opposed to compact. Fractals display
self-similarity or self-affinity within a range of length scales covering at least one order of
magnitude.

In the following, however, we will focus on those parameter regions of the diagram where
there is no length scale, below which the evolving structures are fractal, i.e., on the compact
morphologies.

In [18], evidence has been given for a first-order transition between the two compact
growth morphologies. This problem was also studied in [27–29] within a simplified model,
which did not accurately represent the full continuum equations; therefore conclusions about
the nature of the transition could not easily be drawn.

A similar transition can be found when studying the system in a narrow channel (figure 2)
[30]. Channel growth is interesting, as the idea has been proposed [21,22] and still lies at the
basis of the most recent theory of morphology transitions in diffusion-limited growth [23], that
the growth of fingered morphologies might be consideredself-organized growth in channels.
These channels are effectively provided by the neighbours of a particular crystal in the array
of dendrites or doublons, and the challenge is the prediction of the array spacing, which is
equivalent to the effective channel width.
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Figure 2. Transition from asymmetric finger solutions to symmetric
ones in a narrow channel (the channel width is 200.0 in units of
d0) when the crystal anisotropyε is raised. The solutions are
characterized by their nondimensional velocities. This diagram is
taken from [30].

In a narrow channel, the dendritic solution corresponds to a symmetric finger, and half of
the doublon to an asymmetric one. With that correspondence, the ‘narrow-channel’ system
mirrors the findings in extended systems†. However, it should be noted that there are also
differences, and crystal growth in a channel by itself has been intensively studied numerically
and analytically; see for example [29–37]. One difference is that whereas dendrites cannot
exist for vanishing anisotropy, symmetric fingers can (this is due to the side-walls of the
channel providing enough anisotropy). Moreover, the existence domain of symmetric-finger
solutions starts off with two branches: one for which the growth velocity decreases with
increasing undercooling1 (and which is irrelevant to dendritic growth) and the other one
with increasing velocity, corresponding to the free dendrite in an extended system. Finally,
from experience with other systems, such as eutectics [38] and dilute alloys [39], where
anomalous cell solutions exist that are akin to doublets of asymmetric fingers, one would
expect the transition between symmetric and asymmetric fingers to actually besupercritical
(see also [40, 41]). Nevertheless, in dynamic simulations, typically a velocity jump is
seen (compare figure 2) and symmetric fingers coexist with asymmetric ones, suggesting a
subcriticalbifurcation. A similar situation occurs in the tilt bifurcation of eutectics, where a
coupling between the phase of the pattern and the tilt angle renders a supercritical bifurcation
effectively subcritical [42,43]. The bifurcation diagram of steady-state solutions in a channel,
including branches of symmetric and asymmetric fingers, has been studied in some detail by
Kupfermanet al [34], and their work seems to resolve the question of coexistence between
symmetric and asymmetric fingers in spite of thesupercriticalnature of the basic bifurcation.
However, a simple picture as in the case of the tilt bifurcation of eutectics still appears to be
lacking.

In this paper, we will concentrate on the correspondence between extended and narrow
systems rather than their differences, and proceed as follows. In section 2 we give the
mathematical formulation of the situation investigated as well as a brief description of our
numerical method. This will be followed by the results for the narrow-channel case in section 3
and those for the system with periodic boundary conditions in section 4. The final section is
devoted to a concluding discussion.

2. Mathematical formulation and numerical method

Consider the following situation: a crystal is growing into its undercooled melt, where the
growth is controlled by diffusion [9, 44, 45] of the latent heat of freezing. This process

† We consider a channel narrow when its width is less than five diffusion lengths.
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is governed by the diffusion equation with appropriate boundary conditions at the moving
interface:

∂tu = D∇2u (1)

vn = −D∇u|liquid n +D′ ∇u|solidn (2)

u|interface= 1− d(θ)κ. (3)

The diffusion fieldu is the temperature difference referred to the temperature far from the
interface and normalized by the ratio of latent heat and heat capacity (which is the temperature
increase a solidifying volume element would experience due to latent heat production).D is
the thermal diffusivity in the liquid,κ the curvature of the interface.

The physics underlying these equations can be summarized as follows: a solidifying
front releases heat which diffuses away as expressed by the diffusion equation. Requiring
conservation of energy at the interface results in the Stefan condition (2) for the normal velocity,
where the gradients are taken on the liquid and solid sides of the interface, respectively, and
D′ is the thermal diffusion constant in the solid, usually not much different from that in the
liquid. The final equation constitutes the condition of local equilibrium at the interface taking
into account the Gibbs–Thomson correction.

For simplicity, we shall only consider the so-called one-sided model [44,45], i.e.,D′ = 0
(diffusion takes place only in the liquid). This approximation, which is actually unrealistic
for thermal diffusion, becomes reasonable in the case of solute diffusion in isothermal
solidification. We will use an expression ford(θ), the anisotropic capillary length, that is
slightly different from those used in the literature for fourfold symmetry:

d(θ) = d0{1− ε cos[4(θ − θ0)]}. (4)

Hered0 denotes anaveragecapillary length† proportional to the isotropic part of the surface
energy,ε the capillary anisotropy, andθ the angle between the normal to the interface and the
overall growth direction that we impose by means of additional boundary conditions (either
reflecting walls or periodic boundary conditions). The angleθ0 describes a mismatch between
this overall direction and crystalline anisotropy.

In channel growth, such a mismatch may easily arise, since the original nucleus can have
any orientation with respect to the channel walls which confine growth to a given average
direction. To state this more precisely: in the centre of the channel, a crystal nucleus will of
course start growing along the directionθ0; however, the wall will prevent it from doing so
indefinitely, and once the crystal gets closer to the channel boundary than about one diffusion
length, it will feel the modification of the diffusion field due to the presence of the wall, forcing
it to change its growth direction. (An isolating wall is impenetrable to the latent heat produced;
hence it ‘reflects’ the latter which heats up the liquid in front of the crystal, impeding further
approach to the wall.) As the channel gets filled laterally by the growing morphology, further
growth will be possible only in the direction parallel to the walls (i.e., alongθ = 0). Hence,
the envelope of the morphology will move in this average growth direction. This is the picture
for theaveragefront between crystal and melt.Local features such as tips and branches will
still grow along a direction favoured by crystal anisotropy (such asθ = θ0 or θ = θ0 + π/2),
providedthere is enough open space.

On the other hand, if the channel isnarrow enough, growth may be restricted to a single
finger, which will then growalongthe channel, regardless of the value ofθ0.

For a system withperiodicboundary conditions, the situation is slightly different. There
is nothing to prevent the crystal fingers from growing in the direction surface tension induces

† The average is taken with respect to the angle of orientationθ .
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them to choose, given byθ = θ0 (since free growth in these systems proceeds in the direction
of minimal surface stiffness [44]). However, in this case, the angleθ = 0 corresponds to a
direction (thez-axis) which is orthogonal to the periodicity direction (thex-axis). We can, of
course, imagine a rotation of the coordinate system leading back to the oft-used expression
for d(θ) with θ0 = 0. One might then expect that our system would be in no way different
from the usual configuration, except that growth occurred along the directionθ = θ0 instead
of θ = 0. However, such an expectation would be misled. For when rotated back, our system
is no longer periodic along the direction given byθ = π/2 (thex-axis). To exhibit this on a
visual level, we give figure 3, depicting a periodic fingered structure. If we rotated this system
anticlockwise byθ0, then the dashed line would become parallel to thex-axis. Obviously the
pattern is not periodic in that direction, due to the finite extension of the fingers in their growth
direction, i.e., the presence of tips.
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Figure 3. A tilted array of finger-shaped crystals. The array has periodicity lengthλ along the
x-axis. Its spacing in the direction perpendicular to the fingers (dashed line) is reduced by a factor
cosθ0.

The physics described by (4) with periodicity imposed along the direction given by
θ = π/2 is that of atilted array of dendrites or fingers. A first description of the latter in the
free-growth case has been given by Kupferman and Kessler [40], whereas the more intricate
case of directional solidification has been treated in some detail by two groups [41, 46]. For
the free-growth case, there is no extensive study yet.

The influence of the tilt angleθ0 on the pattern will be twofold: (i) the fingers will have to
be asymmetric to accommodate the periodicity of the diffusion field in a direction that is not a
symmetry direction of the crystal; (ii) the spacing of the tilted array will be shorter by a factor
cosθ0 than the periodicity length (see figure 3). In saying this, we anticipate that in free growth
the crystals will actually grow along the directionθ0 of minimum surface stiffness (which they
would not in directional solidification, due to the influence of the thermal gradient [46], nor in
a channel, of course).

The reduction of spacing should, of course, favour slender structures over fat ones, e.g.,
structures with less side-branching activity are preferred.

So we expect thatθ0 does have an influence on the morphologies arising—obviously due
to the periodic images that provide a channel for the crystal. (The angleθ0 is identical to the
angleα0, defined by Akamatsu and Ihle in their description of similarity laws in the growth of
tilted dendritic arrays [46].) We will discuss this in detail in section 4.

Note that tilted arrays are expected to arise in practice: whenever a crystal starting from
a single nucleus becomes very large, developing a diamond-shaped envelope [28], the side-
branches evolving from the main tips will automatically form a tilted array (see, e.g., figure 3.10
of [15]). In fact, it seems likely that the envelope velocity of large arrays of tilted finger crystals
may play an important role in the determination of the average growth velocity of most diffusive
growth processes. Hence, a fine tuning of their description beyond that given in [23] would
require some knowledge about the behaviour of tilted arrays.
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The set of equations (1)–(3) constitutes amoving boundaryproblem, which in essence is a
modifiedStefan[47] problem. Different ways have been sought to deal with such a problem. A
most successful approach was based on an integral formulation involving the Green’s function
of the stationary diffusion equation [48]. Phase-field modelling [49] is a promising approach
for future 3D calculations—which however up to now has been restricted to either qualitative
computations [50] or small systems [51]—promising, as it allows one to avoid front tracking.
In the meantime, we use a finite-difference scheme for solving the diffusion equation. The
special feature of our procedure is that of working on several sandwiched grids. The interface
is discretized separately, i.e., it does not ‘live’ on the grid, and it carries along a frame system,
to enable treatment of the far system boundaries. At each time step, the full time-dependent
diffusion equation is solved on all the grids using boundary conditions on the frame and then
calculating the diffusion flux at the moving boundary. To do this, the diffusion field on the
frame has to be interpolated from the underlying lattice. Propagation of the interface is done
by averaging the interface velocities obtained from the diffusion fields on the different grids.
For details of the numerical scheme, refer to [18,30].

3. The narrow-channel case: periodically oscillating structure

A startling aspect of the doublon is the fact that it consists of two asymmetric fingers. For
how can two fingers growing next to one another andcompetingfor free space (allowing their
latent heat to diffuse away) stabilize each other in a cooperative manner? To some extent
this remains a puzzle, as a full stability analysis of the doublon has not yet been performed.
A mental picture giving an idea how it can be stable is as follows: if one finger becomes a
little faster it will grow ahead and be in a slightly better position for getting rid of its latent
heat via diffusion. Thus it will grow thicker. However, the thicker a finger the slower it will
continue to grow, due to the fundamental scaling relations connecting growth speed and length
scales. Thus its growth velocity will decrease again and the second finger will catch up with
it. Now ordinary doublons do not display this behaviour as they are true steady-state solutions
of the growth equations. But if they became steady via the stabilization of oscillations of the
type described, it is conceivable that under the right conditions it might be possible to observe
oscillating doublons. Up to now, these oscillations have remained elusive.

On the other hand, it is known that competing influences on a structure (trying to impose
different growth directions) may lead to oscillations†. Therefore it seemed likely that their
introduction in the simplest possible manner as realized by our orientational angleθ0 could be
a way to trigger oscillations in diffusive growth systems. Simulating the system with equation
(4) for various parameters, we did indeed find a periodically oscillating structure (figure 4).

In what follows, lengths will be given in units of the average capillary lengthd0, i.e.,
the latter is set equal to one and all lengths are given as its multiples. Similarly, time is
nondimensionalized by takingd2

0/D as the time unit. Hence, velocity is measured in units of
the thermal diffusivity divided by the average capillary length.

The channel widthW is 200 for figure 4, the mismatch angleθ0 = 30◦, the nondimensional
undercooling1 = 0.7, and the surface tension anisotropy isε = 0.075. Evolution of the
structure proceeds from the upper left picture to the upper right one and then downwards.
That the dynamics of the structure is really periodic can be seen in figure 5, displaying the
time evolution of the tip velocity of the large finger on the right-hand side of the channel

† One example where competing influences on dendrites have been studied before is the competition between capillary
and kinetic anisotropy [30, 44, 52]. While this may be the mostnatural case to be studied, it is not necessarily the
simplest, as selection theory would seem to be more complicated than in channel growth with only one type of
anisotropy.
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Figure 4. Temporal evolution of the periodically oscillating structure found in narrow channels.
Time increases from left to right and from top to bottom. The channel widthW is 200.0,d0 = 1,
θ0 = 30◦,1 = 0.7,D = 1, andε = 0.075.

Figure 5. Periodicity of the temporal development of the velocity of the larger finger. For an
explanation related to the finger evolution itself, refer to the text.

(figure 4). We clearly recognize a noisy but otherwise sinusoidal oscillation. Fourier analysis
of this temporal evolution shows that the amplitude of the basic mode is at least two orders
of magnitude larger than that of the next largest mode (suggesting true periodicity, slightly
perturbed by numerical noise). This evolution remained stable in simulations for more than
105 time units. The periodicity in velocity can easily be understood after a closer look at the
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time sequence of figure 4: at first the finger on the right-hand side is quite fat; then it becomes
even thicker until it splits off the arm that grows over to the other side of the channel. The
thicker the finger the slower it should be. However, in the process of splitting off the second
arm, it becomes thinner and increases its speed. Now the second arm on the left-hand side
of the channel is thicker and therefore slower. It stays behind and loses the competition for
heat diffusion. Finally it dies out on the left-hand side, while the finger on the right-hand side
grows thicker again. All that is necessary to avoid chaotic flipping between the left and right
fingers (it is always the right one that wins in this example) is that on tip splitting the right
finger retains a slight advantage by having a sharper tip. This is essentially guaranteed by its
leaning against the right wall.

In a similar way to Breneret al [23] when setting up their morphology diagram, we
have tried to classify the periodically oscillating structure according to the relevant parameters
controlling its appearance. It should be kept in mind, however, that structures appearing in our
confined system cannot claim the property of being true phases, first because of the finite lateral
size of the system, second because they display an essential dependence on initial conditions.
Such a predicate should only be assigned to theextendedmorphologies obtained by the former
authors. Nevertheless, dynamic states in small systemscanshed some light on mechanisms of
structure formation, and the periodically oscillating structure may, just like a doublon finger,
be considered a building block, playing its role in the evolution of larger structures.

In figure 6, we show theθ0–ε dependence of the structure and its transition to either
symmetric or asymmetric finger solutions. During the transition from the asymmetric finger to
the symmetric one at the upper left side of the diagram, a velocity jump is known to occur; see

Figure 6. Transitions from symmetric/asymmetric fingers to symmetric fingers with strong side-
branching and further to the periodically oscillating structure in theε–θ0 plane for channel width
W = 200.0. Our abbreviations should be obvious: SYM, ASYM, and POS refer to symmetric
and asymmetric fingers and the periodically oscillating solution, respectively. The undercooling
is 1 = 0.7. The dotted lines are conjectured behaviours of the crossover between the different
structures. Obviously it is not possible to derive them from single simulations. This calls for an
analytical treatment.
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figure 2. However, it is known, too, that the velocity of an asymmetric finger does not depend
much on the crystal anisotropy [36]; thus following for example theε = 0.075 line from left
to right there are hardly any changes in velocity until the regime of periodically oscillating
structures is reached. This structure displays velocity oscillations withv-values between
v = 0.0225 andv = 0.0345, where the values stay about constant along the iso-ε line.

There is also a dependence of this structure on the channel widthW . In the limit of small
W , the oscillating solution gets lost in the same way as the asymmetric finger solution for
W of the order of 200 and less, and only symmetric fingers can be observed. Extending the
system size on the other hand will lead to three-, four-, . . . finger solutions with less and less
pronounced periodicity in the velocity of one of the fingers. Finally, the structures look just
like seaweeds.

The evolution of the periodically oscillating structure seems to be driven by the repeated
formation of side-branches. These have a chance to develop due to the main tip being impeded
in growth by the wall. As long as the system is not too wide, the wall nevertheless helps the
finger leaning against it to survive.

This is related to the mechanism generating the so-calleddegenerate morphologyin
directional solidification (figure 8.9 in [30]). Another analogy can be seen when comparing
the evolution of periodically oscillating structures with the transient of an asymmetric finger
(figure 7). The splitting of a second finger growing over to the other side is similar. Therefore,
in the terminology of dynamical systems the case of the periodically oscillating structure can
be described as a transient becoming a periodic attractor.

Figure 7. The transient of an asymmetric finger which shows a clear resemblance to the periodically
oscillating structure. The evolution is according to [53].
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4. Periodic boundary conditions

With periodic boundary conditions, we lose the influence of the channel walls and thereby
the competition of growth directions. (This is true as long as there is no external temperature
gradient imposing a direction.)

What happens in this case is simply that fingers grow in the direction dictated by surface
tension anisotropy (as we neglect kinetic anisotropy). But the structures will not be periodic
with respect to the direction orthogonal to thislocal growth direction. Instead we have a tilted
array, and we can expect that growth morphologies will show some dependence on the tilt
angle in this case.

Figures 8 and 9 are examples of simulated structures. In figure 9, the periodicity length is
large enough for a full doublon to develop in the case of lower anisotropy. Both structures are
stationary in the usualstatisticalsense, i.e., they grow upward at constant velocity, but their
side-branching activity provides them with some additional dynamics, from which we abstract
when calling the structure a steady state. (Rigorousstationarity would require that there exist
a frame of reference in which the structure does not exhibit any movement at all.)

Figure 8. A tilted array of dendrites. Tilt angleθ0 =
30◦, anisotropy parameterε = 0.14, undercooling
1 = 0.65. The periodicity length is 331.6.

Figure 9. A tilted array of doublons. The
periodicity length is 655.3. The anisotropy
has been decreased down to 0.1, while the
undercooling is larger than in figure 8:1 =
0.8. Hence, the basic structures that develop
spontaneously are doublons, not dendrites.

When the periodicity length becomes very small, we expect single asymmetric fingers to
arise (looking roughly like those in figure 3).

Since increasing the tilt angle means decreasing the spacing of the crystal fingers, side-
branching will be more strongly suppressed and an array of broken-parity fingers (doubled or
not) may be favoured over dendrites. This is borne out by table 1.

Structures created withθ0 = 0◦ were used as initial conditions for the simulations leading
to the rotated structures, the velocities of which are given in the right-hand column. That
is, we first waited for stationary structures to arise before we ‘switched on’ the tilt angleθ0.
A rotation byθ0 moves the transition from dendrites to doublons to lower values of1. A
glance at the velocities reveals that the rotation slows down the dendritic structures whereas it
has little effect on the doublons. This already gives an explanation for the shifted transition,
because when several possible stable morphologies compete, it is most of the time the fastest
morphology that will win (by occupying the available space) and thus be observed.

The remaining question is that of why the dendrites are slowed down whereas the doublons
are not. This is due to the fact that atgivenundercooling, doublons are (if they exist) faster than
dendrites; hence their parabolic envelope, still governed approximately by the Ivantsov relation
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Table 1. DE denotes dendrites, DO doublons, rDE/rDO the corresponding rotated structures.
Dependency of the dendrite–doublon transition onθ0 and simulated velocities.

W = 356.9

θ0 = 0◦ θ0 = 30◦

1 v(structure) v(structure)

0.70 0.048(DE) 0.035(rDE)
0.75 0.067(DE) 0.051(rDE)
0.80 0.103(DE) 0.081(DE)→ 0.117(rDO)
0.84 0.139(DE) 0.110(DE)→ 0.169(rDO)
0.85 0.184(DE) 0.184(rDO)
0.86 0.213(DO) 0.213(rDO)

between undercooling and the Péclet number, is slenderer than that of dendrites. Therefore,
the latter compete more strongly with their neighbours in the array than the former. Thus
dendrites will be slowed down more strongly than doublons. Note that one might expect that
for sufficiently large tilt angle the effective channel for a crystal finger to grow along becomes
so small that only the symmetric and not the asymmetric fingers could survive. This is not so
for two reasons. One is that due to the fourfold anisotropy the maximum tilt angle is 45◦. Of
course, we could numerically enforce a twofold anisotropy to avoid this. But then the second
reason would come into play—the diffusion field is not symmetric about thelocal growth axis
in directionθ0—hence there are no true symmetric fingers, and we have parity breaking (but
a trivial variant; the symmetry is broken externally).

The effect of interacting fingers in an array may be regarded as a finite-size effect. Clearly,
it should vanish when the distance between neighbouring fingers goes to infinity. We find that
the system size does indeed play the expected role (see table 2, where the influence of periodicity
is found to be smaller in a system with larger spacing).

Table 2. (Abbreviations as in table 1.) Now the system width isW = 655.3. The influence of
self-interaction via periodic images decreases with increasing system size (compare with the first
table).

W = 655.3

θ0 = 0◦ θ0 = 30◦

1 v(structure) v(structure)

0.7 0.048(DE) 0.047(rDE)
0.8 0.103(DE) 0.073(DE)→ 0.117(rDO)
0.85 0.184(DO) 0.184(rDO)

5. Conclusions

In this paper, we have discussed a periodically oscillating structure found from simulations
including a misorientation angle in the angular dependency of the capillarity length. While
this structure arises in channels which are probably too narrow to be realized experimentally,
it may have some relevance as a building block in extended structures. Oscillatory behaviour
may arise in transients of an overall chaotic motion of the pattern. Since it is connected
to the side-branching activity of a finger growing in a channel, it may be expected in noisy
environments whenever growth can be described by the paradigm of self-organized channel



8992 H Emmerich et al

growth, introduced by Brener, M̈uller-Krumbhaar, and Temkin [21–23].
In the narrow-channel case proper, we find it important to notice that other stable structures

besides the symmetric and asymmetric finger do exist. Here, the influence of the misorientation
can turn the transient of a structure into a periodic attractor. At the moment, we are not aware
of other examples for such a situation but it would be interesting to look for them for reasons
of comparison.

In extended systems, simulated via periodic boundary conditions, we find that dendrites
are more strongly sensitive to the interaction with their periodic images than doublons. Since
the point of the transition from one structure to the other is also affected by the tilt angle, we
expect a refinement of the phase diagram given in [23] to become necessary eventually. In the
simplest possible theory given there, a single transition point is assumed to determine the overall
morphology for a given value of one of the system parameters. However, this transition point
has been calculated under the assumption of free-growth scaling laws. Because in extended
systems there is always an interaction with neighbours and, as argued above, parts of the system
will always grow under conditions of tilted growth, the same pattern might contain dendrites in
parts of its envelope having one orientation and doublons in parts having another orientation.
This would smooth out the transition and allow for a richer variety of morphologies.
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